Skip to main content

TAIL RECURSION

Question 1

Write a function map that is tail recursive. It should take in a list lst and a function fn, and apply the function onto every element in the list. MY ANSWER:

(define (map fn list)
(define (map-iter s m)
(if (null? s) m
(map-iter (cdr s) (cons (fn (car s)) m))
)
)
(reverse (map-iter list nil))
)

Better answer, without using reverse

(define (map fn list)
(define (map-iter s m)
(if (null? s) m
(map-iter (cdr s) (append m (list (fn (car s))))))
)
(map-iter list nil)
)

Question 2

Write a function filter that is tail recursive. It should take in a list lst and a function pred, and keep only the elements in the list that satisfy the predicate.

MY ANSWER:

(define (filter pred lst) 
(define (filter-iter s m)
(cond ((null? s) m)
((pred (car s))
(filter-iter (cdr s) (append m (list (car s)))))
(else (filter-iter (cdr s) m))
))
(filter-iter lst nil)
)

OFFICIAL ANSWER:

(define (filter pred lst) (define (filter-help lst so-far) (cond ((null? lst) so-far) ((pred (car lst)) (filter-help (cdr lst) (append so-far (list (car lst))))) (else (filter-help (cdr lst) so-far)))) (filter-help lst nil))

Question 3

Write a function insert that is tail recursive. It should take in a list lst, an item, and an index, and insert the item into the list at the given index.

MY ANSWER: Ver 1

(define (insert lst item index)
(define (insert-iter s m index)
(cond ((null? s)
(append m (list item)))
((= index 0)
(insert-iter (cdr s) (append m (append (list item) (list (car s)))) (- index 1)))
(else
(insert-iter (cdr s) (append m (list (car s))) (- index 1))
)
)
)
(insert-iter lst nil index)
)

Ver 2:

(define (insert lst item index)
(define (insert-iter s m index)
(if (or (null? lst) (= index 0))
(append m (cons item s))
(insert-iter (cdr s) (append m (list (car s))) (- index 1))
)
)
(insert-iter lst nil index)
)

BETTER SOLUTION:

(define (insert lst item index) (define (insert-help lst index so-far) (if (or (null? lst) (= index 0)) (append so-far (cons item lst)) (insert-help (cdr lst) (- index 1) (append so-far (list (car lst)))))) (insert-help lst index nil))

Question 4

Write a function remove that is tail recursive. It should take in a list lst and an item, and remove the first occurence of item in the list. If item item doesn't occur, just return the original list.

(define (remove lst item) 
(define (remove-thing s m)
(if (= (car s) item)
(append m (cdr s))
(remove-thing (cdr s) (append m (list (car s)))))
)
(remove-thing lst nil)
)
(define (remove lst item)
(define (remove-thing s m)
(if (= (car s) item)
(append m (cdr s))
(remove-thing (cdr s) (append m (list (car s))))
)
)
(remove-thing lst nil)
)
(define (remove lst item)
(define (remove-thing s m)
(cond ((null? s) m)
((= (car s) item) (append m (cdr s)))
(else (remove-thing (cdr s) (append m (list (car s)))))
)
)
(remove-thing lst nil)
)

Question 5

Write a function pop that is tail recursive. It should take in a list lst and an index, and remove the item in the list at the given index. If the index is out of bounds, just return the original list.

(define (pop lst index)
(define (pop-help s m index)
(cond

((null? s) m)

((= index 0)
(append m (cdr s)))

(else (pop-help (cdr s) (append m (list (car s))) (- index 1)))
)
)
(pop-help lst nil index)
)